
Published in Proc. SIGMETRICS 2002

Dynamic Statistical Profiling of Communication
Activity in Distributed Applications

Jeffrey Vetter
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, CA, USA 94551

vetter3@llnl.gov

ABSTRACT
Performance analysis of communication activity for a terascale
application with traditional message tracing can be overwhelming
in terms of overhead, perturbation, and storage. We propose a
novel alternative that enables dynamic statistical profiling of an
application’s communication activity using message sampling.
We have implemented an operational prototype, named PHOTON,
and our evidence shows that this new approach can provide an
accurate, low-overhead, tractable alternative for performance
analysis of communication activity. PHOTON consists of two
components: a Message Passing Interface (MPI) profiling layer
that implements sampling and analysis, and a modified MPI
runtime that appends a small but necessary amount of information
to individual messages. More importantly, this alternative enables
an assortment of runtime analysis techniques so that, in contrast to
post-mortem, trace-based techniques, the raw performance data
can be jettisoned immediately after analysis. Our investigation
shows that message sampling can reduce overhead to
imperceptible levels for many applications. Experiments on
several applications demonstrate the viability of this approach.
For example, with one application, our technique reduced the
analysis overhead from 154% for traditional tracing to 6% for
statistical profiling. We also evaluate different sampling
techniques in this framework. The coverage of the sample space
provided by purely random sampling is superior to counter- and
timer-based sampling. Also, PHOTON’s design reveals that frugal
modifications to the MPI runtime system could facilitate such
techniques on production computing systems, and it suggests that
this sampling technique could execute continuously for long-
running applications.

1 INTRODUCTION
To fully realize the potential of terascale computing, users

must be able to understand the performance of their applications.
Unfortunately, the scale of new systems, which will have
thousands, if not millions, of processors [1], is quickly
outstripping the capabilities of traditional performance analysis
techniques. While traditional trace-based techniques for analyzing
communication performance of distributed applications have
demonstrated advantages [6, 8, 12-14, 17, 18, 20, 21, 24, 26], their
operation on terascale platforms presents several challenges. In
particular, these techniques require post-mortem analysis of

potentially massive tracefiles, which, in turn, can lead to high
instrumentation overhead and flawed performance observations.

Put simply, this paper proposes a novel alternative that
addresses these challenges by enabling statistical profiling for
individual messages of an application’s communication activity
during execution. Similar to other statistical profiling techniques
[2, 3, 9], our technique strikes a balance between the
comprehensive detail of tracing and the insight necessary for
optimization. Our alternative enables runtime analysis of
communication activity by appending a small amount of
performance data to sampled messages. Then, messages can be
sampled and analyzed with a variety of techniques that are easily
interchanged at the Message Passing Interface (MPI) profiling
layer. Also, this alternative enables an assortment of runtime
analysis techniques not previously available with post-mortem
techniques. In this new structure, the system can jettison raw
performance data as soon as the runtime analysis is complete.
Evidence from an operational prototype, built on the MPI, shows
that this new technique can provide an accurate, low-overhead,
tractable alternative for performance analysis.

1.1 Motivating Example
To motivate the demands of performance analysis with large-

scale applications, we consider a case study of SMG2000, an MPI
application with demonstrated scalability to four thousand
processors. (Section 4 provides complete details of the
experimental evaluation.) The goal of this example is to outline
the process of traditional performance analysis, highlight its
limitations, and argue for statistical profiling of communication
activity via message sampling.

Trace-based performance analysis of distributed applications
is very useful because it provides users with detailed chronology
of their application’s execution [6, 8, 13, 14, 17, 18, 20, 21, 24,
26]. As illustrated in Figure 1, the typical operation of a trace-
based tool for analyzing communication operations on a
distributed application is a multi-step process. To make this
process more concrete, we applied a widely used MPI tracing tool
to SMG2000 on 48 tasks. This application sets up and solves a
linear system, a task common to scientific computing. Our tracing
tool interposes instrumentation between the application and the
MPI runtime using the MPI profiling layer that captures pertinent
performance data as in Figure 1. As the instrumented application
executes on a distributed platform, this profiling layer intercepts
significant MPI subroutines, captures a timestamp and relevant
subroutine parameters, records the event to a memory buffer, and,
eventually, writes them to a local disk file (steps and).
Unsurprisingly, most of this instrumentation has been optimized
to use efficient buffering techniques, low overhead timers, and
minimal data collection. At application termination, the tracing
tool automatically merges the distributed files into one file (step

), during which it sorts the events by global time, reconciles
point-to-point message operations, matches collective operations,
and calculates communication statistics.

Clearly, certain types of performance analysis cannot occur
until this final step because some metrics, such as message
latency, are not available until reconciliation of event records for
point-to-point messages. Lastly, with the merged file in hand, a
user can proceed with the investigation using a variety of
techniques (step) including statistical analysis, pattern
recognition, automated classifiers, and visualization to glean
important insights into their application performance. Practically
all of the popular tools in this area rely on visualization to assist
users [4, 13, 23].

1.2 Observations
The first and most significant observation is that SMG2000

has an astonishing number of communication operations: it sends
approximately 16,000 messages per task per solve for our
example input problem. This volume of message traffic creates
very large local and global tracefiles. For example, the final,
merged, binary tracefile for SMG2000 on 48 tasks is 225MB.
SMG2000 has scaled to over 4,000 tasks. We cannot reasonably
expect to capture communication activity at ever-increasing scale
using traditional tracing techniques because the amount of data
generated can be intractable to store and analyze.

More problematic is that the execution time of SMG2000’s
solution phase increases from 26 seconds to 66 seconds – a 154%
increase. This increase is due to the cumulative effect of the
software instrumentation and the fact that tracing event buffers
must be flushed to disk frequently.

Even when a user exercises considerable care in focusing the
instrumentation on particular subroutines or on limited phases of
execution, this situation can perturb the underlying application to
an extent that it does not resemble the actual execution of the
optimized application, especially when tracing a sequence of
messaging operations. For instance, Figure 2 illustrates a sequence
of communication operations that can be influenced by
instrumentation perturbation. One cause of performance problems
in MPI applications is the handling of unexpected incoming
messages. Typically, users try to optimize their applications by

posting receives before their matching sends (as for messages
and in Figure 2). Tracing tools would certainly provide insight
into this phenomenon; however, the intervening instrumentation
may very well delay a properly posted message receive into an
unexpected incoming message. In this example, the cumulative
instrumentation of a and b could very well impede the MPI_Recv
and make message appear as an unexpected message, when in
reality, without the instrumentation, it is not. Statistical profiling
of messages helps to alleviate this issue in two ways. First, it
reduces the instrumentation overhead because fewer messages are
measured. Second, statistical profiling randomly distributes the
instrumentation overhead across the entire message population,
helping to avoid pathological situations like the one proposed in
Figure 2.

2 ENABLING RUNTIME ANALYSIS OF
COMMUNICATION ACTIVITY

As identified in Section 1.2, one major limitation of current
techniques is that much of the analysis must be postponed until
the distributed tracefiles can be merged and reconciled. In contrast
to these trace-based techniques, we propose a new alternative that
enables runtime analysis of communication activity by appending
a minuscule amount of performance information to individual
messages exchanged by the application. Our prototype, named
PHOTON, implements these frugal modifications to enable runtime
analysis and statistical sampling of messages, both of which are
important elements in eliminating the burdens incumbent on trace-
based techniques: overhead, perturbation, and data management.

 PHOTON, our operational prototype for statistical sampling of
application communication activity, focuses on the Message
Passing Interface (MPI) [10, 22]. Historically, users have written
scientific applications for large, distributed memory computers
using explicit communication as the programming model. This
trend crystallized with the creation of the MPI specification [10,
22], which simplified numerous issues for both application

developers and system designers. As a result, application
developers stabilized on the MPI programming model, and this
has facilitated the ongoing development of a considerable number
of applications based on MPI [25]. MPI provides a wide variety of
communication operations including point-to-point operations,
both blocking and non-blocking, and collective operations such as
broadcast and global reductions. We concentrate on basic point-
to-point operations—blocking send, blocking receive, non-
blocking send, and non-blocking receive—because they are

Post-Mortem

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 0

MPI RuntimeMPI Runtime

MPI Profiling LayerMPI Profiling Layer

User ApplicationUser Application

Task 1

AnalysisAnalysis

MPI_Send

PMPI_Send PMPI_Recv

MPI_Recv

Message

Local
tracefile

Local
tracefile

Global TracefileGlobal Tracefile

Figure 1: Traditional Performance Analysis of
Communication Activity.

Task 1

MPI_Recv(from=0)
/* instrumentation d */

/* computation */

MPI_Send(to=1)
/* instrumentation f */

Task 0

MPI_Send(to=1)
/* instrumentation a */
…

MPI_*
/* instrumentation b */
…

MPI_Recv(from=1)
/* instrumentation c */

Figure 2: Perturbation example.

widely used and are the most important yet difficult components
to sample.

2.1 Components
PHOTON’s design has two basic components: a MPI profiling

library and a modified MPI runtime library. An application must
use both components to benefit from runtime analysis and
message sampling. This design minimizes modifications to the
underlying MPI runtime while retaining considerable flexibility at
the MPI profiling layer for implementing sampling and analysis
techniques. Most MPI performance analysis techniques, including
traditional tracing tools, use the MPI profiling layer alone to
gather performance information.

As Figure 3 illustrates, the first component of PHOTON is the
modified MPI runtime library. Our implementation is a fully
functional version of MPICH 1.2.2, configured to use IBM’s
Message Passing Library (MPL). Our modifications are minimal.
We change the definition of headers for point-to-point messages
and the definition of the MPI_Status record to include two new
fields: a timestamp and a source code location identifier. We also
modify the send and receive operations for all message
protocols.

The modified send operations copy these two
variables into the header of the outgoing message. For
receive operations, if the incoming message is tagged,
then the receive operation copies the timestamp and
source code location into these two MPI_Status fields.
This new definition of MPI_Status includes our two new
fields, since each incoming message must set a status
word.1 The profiling layer can then easily check these
two new fields in the MPI_Status structure to determine
if, indeed, the send operation tagged the current
message. Otherwise, it simply ignores them. If tagged,
then the profiling layer can extract these two additional
fields from the MPI_Status structure and use them for
analysis.

Strictly speaking, our limited changes to the MPI
runtime system include: (1) increased message header
size by 12 bytes (where the original header size was
approximately 48 bytes); (2) two writes to these fields
in the send operation; (3) two reads of these fields in
the receive operation; (4) one control branch each in the send and
the receive operation; and (5) increased size of the MPI_Status
structure. As our experimental results show in the next section,
this overhead is imperceptible in the performance of our MPI
implementation. Notice that these changes do not include
procedure calls, data analysis, or sampling mechanisms; the
performance analysis tool inserted at the MPI profiling layer
provides all of these components, if desired.

The second component of our implementation exploits this
additional information by using the MPI profiling layer to allow
flexible analysis on unmodified application codes. Relinking via
the profiling layer interposes the PHOTON profiling layer between
the application and the PHOTON MPI runtime system, where it can
intercept all MPI calls, exploit this new runtime performance
information, and analyze data as necessary.

1 The MPI specification allows users to set MPI_STATUS_IGNORE to
bypass the setup of the MPI_Status structure. PHOTON creates a temporary
MPI_Status structure and passes this structure to the underlying system.

2.2 Operation
Given these two components, PHOTON works as illustrated in

Figure 3. A message is sent from Task 0 to Task 1 using MPI’s
blocking communication routines. At step , the application
prepares the message and calls the MPI_Send routine. The MPI_Send
routine is intercepted by the MPI profiling layer. At point ,
PHOTON decides whether to sample this particular message.
Assume that it decides to sample the current message. PHOTON
then records the start timestamp of the send operation and an
identifier describing this operation’s location in the source code.
Usually, this location is the return address of this MPI subroutine;
however, it can be a more elaborate hash function that encodes a
stack traceback, message parameters, etc. PHOTON passes these
two additional pieces of information on to the MPI runtime and
calls the name-shifted profiling layer routine, PMPI_Send. As the
MPI runtime begins at step , it loads this additional information
into the message header that it prepares. It then dispatches this
message to the underlying message libraries. As the tagged
message flows across the network at step , it carries these two

additional pieces of information with it in its message header.
This operation is similar for all MPI protocols.

Meanwhile, Task 1 has issued a blocking MPI_Recv for this
message, not knowing if the incoming message is a tagged
message or not. As the user application calls MPI_Recv at step , it
must post the blocking PMPI_Recv at step without knowledge of
the sampling decision.2 Only when the message is received can
Task 1 actually make a decision about how to handle this
message. It is important to note that this problem is impossible to
solve for all MPI protocols within the MPI profiling layer alone,
and it necessitated our modifications to the MPI runtime.

Now, Task 1 receives the message at step and it
recognizes that this message has been tagged, so the MPI runtime
copies this information directly into the two additional fields in
our modified MPI_Status structure. When the MPI runtime
completes the receive of this tagged message, it returns from the
PMPI_Recv into the PHOTON profiling layer. At this point, PHOTON
can make any number of decisions about how to analyze the
tagged message. At step , PHOTON can record statistics and

2 Arguably, MPI_PROBE/IPROBE could provide this foresight for blocking
receives; however, this strategy fails for non-blocking operations.

Photon MPI
Runtime

Photon MPI
Runtime

Photon MPI
Profiling Layer
Photon MPI

Profiling Layer

User ApplicationUser Application

Task 0

Photon MPI
Runtime

Photon MPI
Runtime

Photon MPI
Profiling Layer
Photon MPI

Profiling Layer

User ApplicationUser Application

Task 1

AnalysisAnalysis

MPI_Send

PMPI_Send PMPI_Recv

MPI_Recv

Sample?Sample?

Photon
Tagged

Message

Figure 3: PHOTON Design Overview.

discard the data, write it to a trace file, or simply ignore it. When
PHOTON has completed its analysis at step , it returns to the user
application via the MPI_Recv call at step . The user application
can then process the message as it normally would without regard
to the fact that the message was sampled by the underlying
performance analysis system.

2.3 Key Design Implications
This design alternative has a number of important

implications. First, message processing is undisturbed. Our
technique does not require additional messages, additional
copying of message buffers, or excessive quantities of extra buffer
space. Therefore, the MPI behaviors of this alternative should
closely resemble the behaviors of the original MPI application.
Although we considered several options to modifying the
underlying MPI implementation, none of these strategies provided
necessary functionality for all MPI operations and respected all of
the requirements demanded by the MPI specification, such as its
message-ordering requirement.

More specifically, three alternatives come to mind. In the
first alternative, one could simply send an extra message
following each sampled message. This alternative has two
drawbacks: it introduces additional messages into the system, and
the receiving task has no a priori knowledge of when to receive
an extra message. This strategy could also introduce race
conditions into the application. In the second alternative, the
system could exchange performance data during collective
operations; however, the overhead could be noticeable and
reconciling sends with receives would still demand
comprehensive knowledge of all point-to-point operations. The
final alternative is that a technique could use MPI derived types to
piggyback additional data onto messages. On the face of it, this
alternative is appealing. The MPI specification allows nested data
types, so the profiling layer could simply repackage a message
with additional performance data, and send it to the receiver
where it is unpackaged with this performance data. Unfortunately,
this alternative has several problems. First, MPI-derived types can
perform poorly because of additional memory copying and
buffering of data, which might drastically alter the performance
characteristics of the application [11]. Second, the receiving task
cannot determine which messages are tagged messages. MPI
message envelopes specify message source, tag, and
communicator, but not data type. This limited information
prohibits the receiver from determining whether an incoming
message is tagged by using the envelope information. Therefore,
the receive operation has no idea of how to prepare the receive
buffer. This strategy is also plagued by the possibility of several
types of race conditions, if message tags are used to discriminate
sampled messages.

The second important implication is that decisions regarding
sampling and analysis techniques remain at the MPI profiling
layer. Thus, these techniques can be easily interchanged without
altering the MPI runtime. Better still, by relegating all of these
decisions to the profiling layer, the performance of the modified
MPI runtime can remain practically unchanged from the original.

The third and final implication is that this design is
applicable to all types of point-to-point communication regardless
of MPI subroutine or message protocol. Take, for example, non-
blocking communication. PHOTON simply loads the message
header during the initiation of the non-blocking MPI_Isend. The
underlying message library transfers the message normally. As the
message is received with an MPI_Irecv/MPI_Wait pair, the extra

performance information from the message header is transferred
directly into the MPI_Status structure, which is provided to MPI_Wait
as a parameter. This line of reasoning holds true for other
completion operations including MPI_Test and MPI_Waitsome
because they return an MPI_Status structures.

3 STATISTICAL MESSAGE SAMPLING
Although sampling is popular in many areas of performance

analysis, such as procedure profiling [3, 9] and instruction
analysis using hardware counters [2], it has not been applied to
communication activity because of the limitations listed in Section
1. With the novel design modifications proposed in Section 0, we
can now reliably and accurately access performance information
at runtime, so that communication performance analysis can
capitalize on the benefits of statistical sampling. To our
knowledge, this technique is novel and it represents a significant
shift in current technology for performance analysis of terascale,
distributed applications. Sampling has also been applied at low
levels of communication activity [7], but this research focused on
understanding wide-area networks rather than on optimizing the
applications that use those networks.

3.1 Sampling Strategies
As Figure 3 illustrates in step , PHOTON can use most any

technique to decide which messages to sample from the entire
message population of the application. During the send initiation
operation for each message, PHOTON decides whether to sample a
message. Naturally, three different techniques can drive our
approach: purely random sampling, counter-based sampling, and
timer-based sampling. Accordingly, the application must execute
for a reasonably long time and it must send some minimum
number of messages for the sampling to be accurate. These
methods sample from the entire message population; however,
they can also be adapted to sample subsets of the population. For
instance, we could sample only large messages, only messages
sent from a certain callsite, or only messages sent during a certain
phase of the application execution.

Random sampling: Our first sampling method is purely
random sampling. On every send operation, PHOTON draws a
number from a uniform distribution in (0,1] and then checks that
number against a user-defined threshold (T) to determine if the
current message should be sampled. This strategy is simple and it
allows a user to easily control the number of samples by changing
the threshold.

Counter-based sampling: In PHOTON, for counter-based
sampling, a single counter in each task is incremented for every
send operation. When the counter exceeds a threshold, one
message is sampled, the counter is reset, and a new target
threshold is calculated. The user can select the period (P) and
variance (V) of the counter. Counter-based sampling benefits
from its simplicity and low overhead; however, estimating the
appropriate settings for P and V can be difficult because it
depends entirely on the frequency of application communication.

Timer-based sampling: Similarly, for timer-based sampling a
message is sampled after a period of time has expired since the
last send operation. The user specifies a period of time (P) and a
variance (V). Note that our technique does not use expensive
interrupts to execute this sampling technique. Rather, as the
application calls MPI's send routines, PHOTON polls the local time
and then decides if the specified threshold has been met. Although
the cost of sampling the timer can be expensive relative to using
counters, timer parameters are much easier to estimate and, in any

case, PHOTON must capture this timestamp for the outgoing
sampled message.

3.2 Analysis Methods
Now, with a considerable amount of performance

information available at runtime, PHOTON can elect to perform
analysis at runtime and jettison raw performance data
immediately. In the context of terascale computing, this capability
is vital because it eliminates the need for capturing massive
tracefiles and harvesting important performance data from those
files. Certain performance problems may still require tracing;
however, this runtime analysis can quickly identify a subset of
operations for more detailed investigation.

For performance analysis, our experience indicates that it is
important that users are able to map performance data back to
source code; we record and tabulate all messages by source task,
destination task, callsite location in source and destination, and
message size. We capture message latency as our primary
performance metric, where we define latency as the time from the
start of the send operation until the end of the matching receive
operation. Although this definition is somewhat different than
architectural definitions, this interpretation is easy for a user to
reason about, and it maps directly to the user’s source code. Most
trace-based tools use similar definitions.

We introduce two lightweight techniques to analyze this data
at runtime, and we include an expensive technique of writing the
event to a local file as a reference measurement.

Statistical summary (STAT): One traditional option for
profiling is a statistical summary of the messages. For our
statistical summary, PHOTON captures a maximum, a minimum, a
count, and a cumulative total of the message latency. With a long
application execution, this statistical information would supply a
reasonably accurate picture of communication activity. It also has
a very small analysis overhead that includes locating an entry in a
data structure and updating several fields in that entry. This
summary, when combined with the message size and topology
information, can identify performance problems of specific
message operations.

Frequency distributions (FREQ): Another valuable technique
for analyzing large masses of raw data is a frequency distribution.
Using a frequency distribution, an analyst can project any number
of raw data samples into classes, which are easy to represent,
understand, and store. These distributions provide more
information than the statistical summary presented above;
however, the overhead for updating the entry and the memory
requirements is increased slightly. As before, we categorize the
data by sender, receiver, callsite locations for both the sender and
receiver, and message size. Our implementation creates an array
of bins for message latency delimited by a common log scale.
Each bin counter is incremented when a message’s latency falls
within that bin’s bounds.

Write to File (WRITE): Although our main focus for
PHOTON is runtime analysis of performance data, we can simply
use the analysis step to write the values to a memory buffer or a
file. In contrast to traditional tracing, however, this file would not
represent a complete chronology of the application’s
communication behavior, but rather a small, sampled portion of
the overall communication.

4 EVALUATION
Our evaluation focuses on the hypothesis that PHOTON can

offer a feasible alternative to trace-based analysis of message-
passing applications on terascale platforms. In this regard, we
evaluate PHOTON along several dimensions: overhead and
perturbation, sampling and analysis methods, and improvements
in data management. Then, we apply PHOTON to several
applications in a realistic situation. Table 1 provides an overview
of our experiment configurations.

4.1 Platform
We ran our tests on an IBM SP system. This machine is

composed of sixteen 222 MHz IBM Power3 eight-way SMP
nodes, totaling 128 CPUs. Each processor has three integer units,
two floating-point units, and two load/store units. Its 64 KB L1
cache is 128-way associative with 32 byte cache lines, and L1
uses a round-robin replacement scheme. The L2 cache is 8 MB in
size, which is four-way set associative with its own private cache

Configuration M
on

ik
er

PH
O

TO
N

 M
PI

R

un
tim

e

PH
O

TO
N

pr

of
ili

ng

la
ye

r

Sa
m

pl
in

g
m

et
ho

d

A
na

ly
si

s
M

et
ho

d

Description
Original MPI ORIG No No - -
MPI Modified to
include PHOTON
information

NOPR
OF Yes No - -

MPI Runtime w/ PHOTON modifications. Lacks
PHOTON profiling layer that includes sampling and
analysis methods.

Sampling enabled
at various random
thresholds

P-X Yes Yes Random
X = threshold -

Modified MPI with sampling infrastructure installed
where the threshold for random sampling is X. No
analysis is performed on the sampled message.

Sampling enabled
at various counter
rates

C-X Yes Yes Counter
X = period -

Modified MPI with sampling infrastructure installed
where the counter-sampling period is X. No analysis is
performed on the sampled message.

Sampling enabled
at various timer
periods

T-X Yes Yes Timer
X = period -

Modified MPI with sampling infrastructure installed
where the timer-sampling period is X. No analysis is
performed on the sampled message.

Sampling w/
various analysis
methods A-X-B Yes Yes

A = sampling
method

X = threshold

B is WRITE,
STAT, or

FREQ

Modified MPI with sampling infrastructure installed
where the sampling method is A with threshold X and
the stated analysis B is performed on each sampled
message.

Table 1: Experiment Configuration Overview.

bus. At the time of our tests, the batch partition had 15 nodes and
the operating system was AIX 4.3.3. Each SMP node contains 4
GB main memory for a total of 64 GB system memory. A Colony
switch—a proprietary IBM interconnect—connects the nodes. We
compiled the various tests with the IBM XL compilers. Our test
jobs ran on dedicated nodes, although other jobs were
concurrently using the network. We built our PHOTON prototype
with the publicly available version of MPI, namely MPICH 1.2.2,
which we configured to use IBM’s Message Passing Layer (MPL)
as the communication substrate.

4.2 Overhead
Our proposals hinge on the ability of the MPI runtime system

to carry a small amount of additional information with each
message. To assess the penalty for this increase in the message
header size, we compare three versions of MPI as described by
Table 1: (1) a version of the original MPI (ORIG); (2) a version of
the modified MPI with the minimal internal changes, but without
the PHOTON profiling layer installed (NOPROF); and (3) a version
with both the modified MPI and the PHOTON profiling layer
configured to sample no messages (P-0-OFF). For these
experiments, we did not perform analysis on the resulting sampled
message; we consider analysis methods in the next section. These
experiments measure message latency and bandwidth for each
configuration using the Pallas PMB-MPI1 PingPong benchmark
between two SMP nodes. This benchmark measures average
latency and bandwidth for multiple send–receive pairs, and it
implements a “warm up” period prior to each test.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

ORIG
NOPROF
P-0-off

Figure 4: PHOTON Overhead.

As Figure 4 illustrates, the modified version of MPI
(NOPROF) performs identically to the original version (ORIG).
The increase in latency was less than one microsecond for all
message sizes. When we included the PHOTON profiling library
with sampling disabled (P-0-OFF), the overhead increased by
three microseconds at a payload size of 4 bytes, though it is only
noticeable for messages that have fewer than 10,000 bytes. As
message size increases, this fixed-cost overhead disappears into
the greater cost of the communication operation, as expected.
Although we do expect the overhead for PHOTON to be very small
for most MPI implementations, the impact of these changes will
be proportionally higher on optimized messaging layers, such as

those that use shared memory for intra-node transfers on an SMP.
Our experiments showed no measurable change in the
communication bandwidth across these configurations.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
C-2-FREQ
C-4-FREQ
C-16-FREQ
C-64-FREQ
C-256-FREQ

Figure 5: PHOTON Overhead for Counter Sampling.

This result is pivotal because it argues that these new features
could be included in many MPI implementations without
mandatory performance degradation. The optional profiling
library does inflict a small overhead, but it is only noticeable only
for small messages. This result also supports our decision to
separate the sampling and analysis implementation from our
changes to the internal MPI runtime for runtime analysis.

4.3 Sampling Methods
The various sampling methods introduced in Section 3.1

have different performance penalties and results with respect to
how they sample the message population of the application. All
three options provide a convenient means to control the number of
messages sampled, and we use that feature to evaluate each
method’s overhead and sample space. We delay discussion of
sample space until Section 4.5 where we evaluate it on real
applications. As shown in Table 1, we vary the threshold (X) for
random sampling (P-X), the period (X) for counter-based
sampling (C-X), and the period (X) for timer-based sampling (T-
X). Variance for counter- and timer-based sampling was 10% of
the respective period. Each sampled message is analyzed with the
frequency distribution technique.

First, for counter sampling, we range the period from 2 to
256. Figure 5 illustrates the overhead’s explicit variation with the
counter period. For a payload of 4 bytes, the latency ranges from
48.7 microseconds for C-2 down to 40.1 microseconds for C-256.
For reference, we include the lower bound latency of 37.2
microseconds at 4 bytes for the NOPROF configuration. For
applications that send messages with payloads of more than
20,000 bytes, the cost is imperceptible relative to the overall
messaging cost.

Next, Figure 6 shows that the overhead for timer-based
sampling is less controllable, but it remains low. A 4-byte
message suffers an increase in latency from 37.2 microseconds for
NOPROF to 45.5 microseconds for T-0.001-FREQ, where
messages are sampled at a period of 1 millisecond. Increasing the

sampling period to 300 milliseconds lowers the latency to 41.8
microseconds.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
T-1-FREQ
T-0.3-FREQ
T-0.1-FREQ
T-0.03-FREQ
T-0.01-FREQ
T-0.003-FREQ
T-0.001-FREQ

Figure 6: PHOTON Overhead for Timer Sampling.

Last, for random sampling, we range the threshold from 0.01
(1%) up to 0.9 (90%). Figure 7 illustrates the variation in response
to this range. At 1% for a 4-byte message, the latency increases to
43.3 microseconds from 37.2 microseconds for NOPROF. As the
threshold increases up to 90%, the latency also increases to 57.0
microseconds.

Message Payload Size (Bytes)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

NOPROF
P-0.01-FREQ
P-0.03-FREQ
P-0.1-FREQ
P-0.25-FREQ
P-0.5-FREQ
P-0.75-FREQ
P-0.9-FREQ

Figure 7: PHOTON Overhead for Random Sampling.

This evidence reveals that all three sampling strategies have
a demonstrated controllability of overhead with respect to
message latency, and it shows that each strategy can have limited
impact on the target.

4.4 Analysis Methods
Runtime analysis methods are valuable because after

analysis, the raw data can be purged immediately, eliminating
many of the problems with traditional techniques. However, the

analysis methods must balance conflicting goals of minimizing
computation and storage against the goal of providing enough
detailed information for a user to make a proper diagnosis. For
this reason, we evaluate two lightweight statistical analysis
techniques and a traditional technique of writing the data to a
local file. Viewed in this light, it is important to remember that the
cost of the analysis technique can be balanced against the
sampling rates evaluated earlier. If a particular analysis method
has relatively high cost, then the sampling rate can be lowered to
compensate, minimizing the overall impact on the application
execution.

As Figure 8 illustrates, the overhead of analysis methods
varies considerably; however, our ability to change the sampling
rates provides considerable flexibility in regulating this analysis
cost. In Figure 8, we see that the most expensive technique is
writing a record to a file (P-0.5-WRITE) at 59.9 microseconds,
and as we would expect, that the lowest overhead occurs when
analysis is disabled (P-0.1-OFF). This cost drops as we decrease
the random sampling threshold to 10% (P-0.1) from 50% (P-0.5)
for each analysis technique. Although both the statistical summary
method and the frequency distribution method yield similar levels
of overhead, they perform much better that the write technique.
For applications that execute for long periods of time and send a
large volume of messages, a user could lower the sampling rate to
a very small threshold (e.g., 0.1%).

Message Payload Size (Bytes)

1 10 100 1000 10000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

100

1000

P-0.1-OFF
P-0.1-WRITE
P-0.1-STAT
P-0.1-FREQ
P-0.5-OFF
P-0.5-WRITE
P-0.5-STAT
P-0.5-FREQ
NOPROF

Figure 8: PHOTON Overhead for Analysis Methods.

4.5 Applications
To verify that our new technique works with real

applications, we tested three applications: sPPM [19], Sweep3D
[16], and SMG2000 [5]. All of these benchmarks have scaled to
thousands of tasks, use MPI, are publicly available, and use point-
to-point primitives for the majority of their communication. In
these examples, we scaled problem sizes with the number of tasks,
keeping the amount of work per task constant.

sPPM: sPPM [19] solves a 3-D gas dynamics problem on a
uniform Cartesian mesh, using a simplified version of the
Piecewise Parabolic Method. The algorithm makes use of a split
scheme of X, Y, and Z Lagrangian and remap steps, which are
computed as three separate sweeps through the mesh per timestep.

Message passing provides updates to ghost cells from neighboring
domains three times per timestep.

Sweep3D: Sweep3D [15, 16] is a solver for the 3-D, time-
independent, particle transport equation on an orthogonal mesh,
and it uses a multidimensional wavefront algorithm for “discrete
ordinates” deterministic particle transport simulation. Sweep3D
benefits from multiple wavefronts in multiple dimensions, which
are partitioned and pipelined on a distributed memory system. The
three-dimensional space is decomposed onto a two-dimensional
orthogonal mesh, where each processor is assigned one columnar
domain. Sweep3D exchanges messages between processors as
wavefronts propagate diagonally across this 3-D space in eight
directions.

SMG2000: SMG2000 [5] is a parallel semicoarsening
multigrid solver for the linear systems arising from finite
difference, finite volume, or finite element discretizations of the
diffusion equation fuuD =+∇⋅∇ σ)(on logically rectangular
grids. The code solves both 2-D and 3-D problems with
discretization stencils of up to 9-points in 2-D and up to 27-points
in 3-D. Because SMG2000 is an implicit solver, its message
characteristics are much different than both sPPM and Sweep3D.
SMG2000 sends considerably more messages and the messages
are orders of magnitude smaller, usually less than 2,000 bytes.
The message distribution is also much different. sPPM and
Sweep3D have regimented 3-D and 2-D nearest neighbor
communication patterns, respectively. On average, every
SMG2000 task communicates with one half of all other tasks.

Random Sampling Threshold

0.01 0.1 1

N
um

be
r o

f M
es

sa
ge

s
Sa

m
pl

ed
 o

n
Ta

sk
 0

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

sPPM
Sweep3D
SMG2000

Figure 9: Number of Messages Sampled on Task 0.

Figure 9 shows the number of messages actually sampled by
PHOTON on our three applications, where a threshold of 1.0 shows
the total number of messages sent from Task 0. Here, we can also
see the differences in the number of messages sent by every
application. SMG2000 sends about 105,000 messages whereas
sPPM sends only 260. Encouragingly, Figure 9 illustrates that
PHOTON can easily change the number of messages sampled
during an application experiment.

Sweep3D and sPPM send relatively few messages; our
experiments confirmed that all sampling rates less than 50% did
not have a measurable effect on the application runtime. When the
sampling threshold increased above 50%, the execution time of

both applications increased consistently but never more than 1%.
SMG2000, on the other hand, sends significantly more messages;
Figure 10 shows the impact of the PHOTON sampling threshold on
the SMG2000 runtime, normalized to the NOPROF configuration.
We see that initially, at a 1% sampling threshold, SMG2000
experiences a slowdown of 6.1%. As the sampling threshold
increases to 90%, the slowdown climbs to 11%.

Random Sampling Threshold

0.0 0.2 0.4 0.6 0.8 1.0 1.2
R

el
at

iv
e

Ap
pl

ic
at

io
n

Sl
ow

do
w

n
0.00

0.02

0.04

0.06

0.08

0.10

0.12

SMG2000

Figure 10: Impact of sampling rate on SMG2000 runtime.

Although SMG2000 does incur perturbation on the
application runtime, its impact is much less than the traditional
tracing approach that had a 154% slowdown in execution time.
Much more importantly, because PHOTON gathers its information
with sampling, it helps to avoid pathological measurement
problems like those mentioned in Section 1.2. Still, we believe
that more aggressive optimization of the PHOTON profiling layer,
which includes the sampling and analysis logic, would reduce this
overhead. For instance, the current implementation calls the
system-wide global clock to timestamp outgoing messages, and
consequently, we sample it at the beginning of every send
operation. An implementation with lower overhead might use a
hybrid timer scheme where the expensive system-wide global
clock is accessed periodically and the local, economical clock is
used between these global clock updates. Also, our current
strategy uses the standard UNIX libraries for its floating-point
random number generators; we could possibly reduce their
expense by using different operations, and by changing the
implementation of these generators.

Another characteristic of different sampling methods and
thresholds is the resulting sample space. Figure 11 shows the
relative number of distinct messages sampled as a portion of the
entire sample spaces for SMG2000 and sPPM. Here, we define a
distinct message as at least one sample of a message identifier,
where a message identifier is a unique identifier hashed from the
tuple of source rank, destination rank, source code location,
destination code location, message size. Clearly, as the sampling
threshold increases, so does coverage of the population. However,
PHOTON’s sampling rate is controlled for each task, not the
application as a whole. When samples are aggregated across all
tasks, with a 25% threshold, we get over 80% coverage for each

of these experiments. We expect this coverage to increase for
long-running executions of any application. Admittedly, our
strategy suffers from issues with sampling: messages that are sent
infrequently, or only once, might never be sampled.

Random Sampling Threshold

0.0 0.2 0.4 0.6 0.8 1.0

R
el

at
iv

e
N

um
be

r o
f D

is
tin

ct
 M

es
sa

ge
s

Sa
m

pl
ed

0.0

0.2

0.4

0.6

0.8

1.0

SMG2000
sPPM

Figure 11: Sample Space of Message Population.

Figure 12 shows a subset of the performance data from our
experiments on SMG2000. Latency distribution is a frequency
distribution of the message latency where bin bounds are
delimited by a common log scale. In this figure, we have
displayed 36 of over 11,000 message identifiers. The distributions
at A and B show message latency falling primarily into one bin,
while the message latency for C has a wider distribution. A user
could easily harvest this distribution information, combine it with
knowledge of the topology, and highlight poor communication
activity (including the locations of the respective source code) as
well as the consistency of specific measurements.

4.6 Observations
Our experimental evaluation substantiated many of our ideas

and it also revealed several issues. Among the most important
observations exposed by our experiments were that by using a
variety of sampling and analysis techniques, we could control the
performance overhead on message latency, bandwidth, and
application runtime. Furthermore, the design of our PHOTON
prototype underscores that a clean separation of functionality
between the MPI runtime and the MPI profiling layer can preserve
performance and flexibility.

Reduced overhead. Our evaluation revealed that we could
dramatically control the overhead of PHOTON while maintaining
important information like message latency with statistical
profiling. Our experiments on real applications and on
benchmarks demonstrated that this approach radically diminishes
the impact of instrumentation on the application. For SMG2000,
we reduced the impact on solver runtime from a 154% slowdown
for tracing to 6% for message sampling. Consequently, these
variable sampling rates can be balanced against the cost of the
analysis technique.

Improved accuracy. As a result of the reduced overhead, this
approach improves the accuracy of the performance analysis. By
reducing instrumentation impact and by randomly sampling

individual messages, PHOTON provides a more accurate analysis
of communication activity and it can paint a vastly different
picture than traditional tracing communication. Preliminary
comparisons of tracefile data to message sampling data show that
different analysis conclusions are possible, and our future work
includes quantifying these differences.

0

2

4

6

8

1.0e+0
3.2e+0

1.0e+1
3.2e+1

1.0e+2
3.2e+2

1.0e+33.2e+3
1.0e+43.2e+41.0e+53.2e+51.0e+63.2e+61.0e+7

0
5

10
15

20
25

30
35

C
ou

nt

Latency Distribution (m
icroseconds)Message Identifier

A

B

C

Figure 12: Example Frequency Distribution.

Reduced data volume. Statistical message sampling, when
combined with runtime data analysis, eases the data management
burden imposed by traditional techniques; our experiments on
several applications demonstrate that significant, useful
performance information can be processed dynamically. Because
we can calculate message latency at runtime, the analysis can
proceed immediately, discarding any raw performance data as
necessary. Our lightweight analysis examples—statistical
summary and frequency distribution—show that PHOTON can
collect important information from long-running, terascale
applications.

Frugal modifications to MPI runtime have negligible
performance implications. The design of our PHOTON prototype
emphasizes that a clean separation of functionality between the
MPI runtime and the MPI profiling layer can preserve
performance and flexibility. Changes to the MPI runtime system
were frugal and our evidence indicates that these changes have an
almost imperceptible performance penalty. Control of the
sampling and analysis techniques remains in the profiling layer, so
that users can simply interpose various techniques into their
applications to do performance analysis. Indeed, we believe this
result argues for PHOTON features in production MPI
implementations on terascale systems because it will be necessary
for any performance analysis of communication activity. What is
more, with its low overhead and amortized perturbation, this
technique is also appealing to consider using it continuously for
large-scale, long-running applications.

Sampling methods. We found that our timer-based sampling
method can lead to pathological situations where only certain
messages are sampled. For example, it is common in scientific

simulations to exchange data with neighbors during one phase of a
timestep and compute during the other phase. We found that many
of our experiments with timer-based sampling sampled only the
first communication operation immediately after the compute
phase, and then missed several of the consecutive send operations
that immediately followed it. The other two sampling strategies
did not suffer from this deficiency because they operate
independent of time. More importantly, our random sampling
strategy allows a user to specify a uncomplicated percentage of
messages to sample.

5 CONCLUSIONS
As parallel computing systems continue to scale to massive

numbers of processors, performance analysis techniques must
allow users to understand their application’s behaviors. We have
proposed and evaluated a novel alternative to trace-based, post-
mortem performance analysis of communication activity for these
applications: statistical profiling of communication activity using
runtime message sampling. Our operational prototype, PHOTON,
demonstrated several significant advantages over the traditional
trace-based approaches including dramatically lower overhead
and perturbation, even for applications that communicate
frequently, such as SMG2000. Our implementation strategy
required minor modifications to the MPI runtime to enable
runtime analysis of performance data, and it allowed flexible
development of different sampling and analysis techniques at the
MPI profiling layer.

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S.

Department of Energy by the University of California, Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-
48. This paper is available as Technical Report UCRL-JC-145800.

REFERENCES
[1] G.S. Almasi, C. Cascaval et al., “Demonstrating the

scalability of a molecular dynamics application on a
Petaflop computer,” Proc. Int'l Conf. Supercomputing,
2001, pp. 393-406.

[2] J.M. Anderson, L.M. Berc et al., “Continuous profiling:
where have all the cycles gone?,” ACM Trans. Computer
Systems, 15(4):357-90, 1997.

[3] T.E. Anderson and E.D. Lazowska, “Quartz: A Tool for
Tuning Parallel Program Performance,” Proc. 1990
SIGMETRICS Conf. Measurement and Modeling
Computer Systems, 1990, pp. 115-25.

[4] R. Bosch, C. Stolte et al., “Rivet: a flexible environment
for computer systems visualization,” Computer Graphics,
34(1):68-73, 2000.

[5] P.N. Brown, R.D. Falgout, and J.E. Jones,
“Semicoarsening multigrid on distributed memory
machines,” SIAM Journal on Scientific Computing,
21(5):1823-34, 2000.

[6] J. Caubet, J. Gimenez et al., “A Dynamic Tracing
Mechanism for Performance Analysis of OpenMP
Applications,” Proc. Workshop on OpenMP Applications
and Tools (WOMPAT), 2001.

[7] K.C. Claffy, G.C. Polyzos, and H.-W. Braun, “Application
of sampling methodologies to network traffic

characterization,” Proc. SIGCOMM: Communications
architectures, protocols and applications, 1993, pp. 194-
203.

[8] G.A. Geist, M.T. Heath et al., “A Users' Guide to PICL -
A Portable Instrumented Communication Library,” Oak
Ridge National Laboratory, P.O.Box 2009, Bldg. 9207-A,
Oak Ridge, TN 37831-8083 1991.

[9] S.L. Graham, P.B. Kessler, and M.K. McKusick, “Gprof:
A Call Graph Execution Profiler,” SIGPLAN Notices
(SIGPLAN '82 Symp. Compiler Construction), 17(6):120-
6, 1982.

[10] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable
parallel programming with the message-passing interface,
2nd ed. Cambridge, MA: MIT Press, 1999.

[11] W.D. Gropp, E. Lusk, and D. Swider, “Improving the
Performance of MPI Derived Datatypes,” Proc. MPI
Developers and Users Conference (MPIDC), 1999.

[12] W. Gu, G. Eisenhauer et al., “Falcon: On-line Monitoring
and Steering of Parallel Programs,” Concurrency: Practice
and Experience, 10(9):699-736, 1998.

[13] M.T. Heath, A.D. Malony, and D.T. Rover, “Parallel
performance visualization: from practice to theory,” IEEE
Parallel & Distributed Technology: Systems &
Applications, 3(4):44-60, 1995.

[14] J. Hoeflinger, B. Kuhn et al., “An Integrated Performance
Visualizer for OpenMP/MPI Programs,” Proc. Workshop
on OpenMP Applications and Tools (WOMPAT), 2001.

[15] A. Hoisie, O. Lubeck et al., “A General Predictive
Performance Model for Wavefront Algorithms on Clusters
of SMPs,” Proc. ICPP 2000, 2000.

[16] K.R. Koch, R.S. Baker, and R.E. Alcouffe, “Solution of
the First-Order Form of the 3-D Discrete Ordinates
Equation on a Massively Parallel Processor,” Trans. Amer.
Nuc. Soc., 65(198), 1992.

[17] J. Labarta, S. Girona et al., “DiP: A Parallel Program
Development Environment,” CEPBA, Barcelona, Spain
1996.

[18] A.D. Malony and D.A. Reed, “Visualizing Parallel
Computer System Performance,” in Parallel Computer
Systems: Performance Instrumentation and Visualization,
M.S. Bucher, Ed. New York: ACM, 1990.

[19] A.A. Mirin, R.H. Cohen et al., “Very High Resolution
Simulation of Compressible Turbulence on the IBM-SP
System,” Proc. SC99: High Performance Networking and
Computing Conf. (electronic publication), 1999.

[20] D.A. Reed, P.C. Roth et al., “Scalable performance
analysis: the Pablo performance analysis environment,”
Proc. Scalable Parallel Libraries Conf., 1994, pp. 104-13.

[21] S. Shende, A.D. Malony et al., “Portable profiling and
tracing for parallel, scientific applications using C++,”
Proc. SIGMETRICS Symp. Parallel and Distributed Tools
(SPDT), 1998, pp. 134-45.

[22] M. Snir, S. Otto et al., Eds., MPI--the complete reference,
2nd ed. Cambridge, MA: MIT Press, 1998.

[23] J. Stasko, J. Domingue et al., Eds., Software Visualization:
Programming as a Multimedia Experience,. Cambridge,
MA: MIT Press, 1998.

[24] J.S. Vetter, “Performance Analysis of Distributed
Applications using Automatic Classification of
Communication Inefficiencies,” Proc. ACM Int'l Conf.
Supercomputing (ICS), 2000, pp. 245 - 54.

[25] J.S. Vetter and F. Mueller, “Communication
Characteristics of Large-Scale Scientific Applications for
Contemporary Cluster Architectures,” Proc. International
Parallel and Distributed Processing Symposium (IPDPS),
2002.

[26] C.E. Wu, A. Bolmarcich et al., “From Trace Generation to
Visualization: A Performance Framework for Distributed
Parallel Systems,” Proc. SC2000: High Performance
Networking and Computing, 2000.

